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Abstract-The effect of interface bond strength on the transverse behavior of elastic-plastic com­
posite materials is studied. A finite element model employing special interface elements is developed
for this study. The interface element allows modeling of either perfect bonding or debonding based
on the interfacial stress state. The results of this study provide detailed information regarding the
failure mechanisms and the ultimate strength of fiber-reinforced materials. Numerical eltamples are
presented for a Kevlar/epoltY composite system. Failure envelopes for the composite under bialtial
loading are obtained for various interface bond strengths. The numerical results are in good
agreement with the eltperimental data.

I. INTRODUCTION

The inclusion of fibers in a matrix is frequently used to produce a compo~ite material with
more desirable mechanical properties than either material alone. Design values for mech­
anical properties are normally obtained from laboratory tests. In fact, laboratory and field
load tests give valuable and, to a significant degree, analytically indeterminable information
on the behavior of fiber-reinforced materials. However, the ability to judge the probable
response of such materials to untested loading conditions, or to rationally modify the
design of such materials to improve their mechanical response requires knowledge of the
micromechanical interactions of the constituent materials.

The ability of the bond bctwccn fiber and matrix to transfer load across the interface
strongly affects the mechanical response of composite materials. The objective of this
study is to devise and vcrify a method of analysis which may be used to investigate the
micromechanical interfacial debonding mechanisms of a class of fiber-reinforced materials,
consisting of an isotropic, elastic-plastic matrix containing transversely isotropic, linearly
elastic fibers. The material is loaded in the direction normal to the fiber axis.

Perhaps the most widely used analytical approach for estimating the properties of
composite materials is the rule of mixtures, which can reasonably predict the Young's and
shear moduli of the composites when the composite has a very strong bond between fiber
and matrix. However, the rule of mixtures technique does not apply well to failure properties
because it fails to account for the stress concentration which results from thc tibcr/matrix
interactions. Many other models have beeen developed by Hill (1964), Adams and Tsai
(1969), Hashin (1979), Chou et al. (1980), Oshima and Nomura (1985), Takahashi and
Chou (1988) and Teply and Dvorak (1988) to predict the mechanical behavior ofcomposite
materials; all of them assume either perfect bonding or debonding at the fiber/matrix
interface. No attempt was made in the models to include a failure criterion for interfacial
debonding during the loading history.

In this study, the effect of the interface bond strength on the transverse response of
elastic-plastic composite materials is investigated. A binary periodic microstructure sub­
jected to macroscopically uniform stress is considered. A unit cell of the periodic micro­
structure is subdivided into regular and interface elements; the interface elements are
developed to model either perfect bonding or debonding based on the present interfacial
stress state. The solutions of local stress and strain fields and overall properties are obtained
using the finite element technique.

In the next section, the unit cell which represents the composite's periodic micro­
structure is addressed. In Section 3, the finite element model and the development of an
interface element for evaluating the local fields and overall properties of the composite are
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described. Finally, the influence of interface bond strength on the transverse propertie~ of
the Kevlar!epoxy composite system is demonstrated and discussed. The numerical results
are compared with experimental data whenever possible.

2. GEOMETRY OF THE PERIODIC MICROSTRUCTURE

Although composite microstructures are random, periodic distributions of fibers in a
matrix are often assumed, especially for composites with high fiber volume fractions.
Evaluation of the overall properties of a binary composite is performed on a small unit cell,
which represents the periodic microstructure. The unit cell for the Periodic Hexagonal
Array (PHA) model was developed and used by Teply and Dvorak (1988) to estimate
instantaneous local stress and strain fields, and the overall moduli of elastic-plastic com­
posites. This unit cell is expanded in this study and applied to problems of bonding!
debonding at the fiber!matrix interface in binary composites. A detailed discussion of
the concepts of the PHA model is given in Teply and Dvorak (1988). Only relationships
relevant to the current problem are given below.

For composites reinforced by aligned continuous fibers, the problem may be treated
as a generalized plane strain problem. Figure I shows a transverse section of the composite
with fiber placed in a regular periodic hexagonal array. The fibers are assumed to have
identical circular cross-sections. The unit cell can be chosen as a triangle with vertices at
adjacent fiber centers. There are two sets of such tri'lngular cells, indicated by shaded and
unsh<lded triangles in Fig. I. It has been shown in Teply and Dvorak (1988) that either cell
can be generated through rotation of the properties associated with the other cell.

Under overall uniform tmnsverse stresses, the deformation of the composite unit cell
can be compared to that of an effective homogeneous unit cell, which has the same overall
properties of the composite. (n particular. it is possible to identify certain contact points in
both the composite and homogeneous cells which experience exactly the same displacements
under uniform overall loading. For the geomery shown in Fig. I, any macroscopically
uniform deformation of the composite can be specified in terms of relative displacements
of the fiber centers, and therefore the vertices of the triangular unit cell are chosen as contact
points.

3. EVALUATION OF THE LOCAL AND OVERALL PROPERTIES

3.1. Fi"ite e/emeflt model
The local fields and overall properties of the unit cell are evaluated from the dis­

placement formulation of the finite element method. The equilateral triangle unit cell is

Fig. I. Transverse section of periodic he~agonal array model of binary composites.
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Fig. 2. Finite element mesh for the equilateral triangle unit cell.

divided into finite elements as shown in Fig. 2. The relative areas of the fiber and matrix
are determined from the fiber volume fraction. Three- and four-node generalized plane
strain elements are used to discretize the regions. Adjacent elements in the fiber and matrix
are connected by interface elements. which will be discussed in the next section.

The large-strain theory and one point integration scheme are used to calculate the
element stiffness matrix. For the complexities of the occurrence of debonding and the
material inelasticity. the technique of the incremental loading path is used in the analysis.
Two distinct groups of constraint conditions are introduced to meet the compatibility and
equilibrium requirements at the boundary of the unit cell. These requirements need to be
satisfied at each increment. Examples of each of these constraint conditions are discussed
in the following sections.

(a) Compatibility requirement. In order to maintain compatibility between adjacent
unit cells. the sum of the relative displacement of node 4 to node I and the relative
displacement of node 6 to node 2 should be equal to zero (see Fig. 2), Le.

(1,2)

where u and v denote the displacements in the x- and y-directions, respectively.

(b) Equilibrium requirement. According to the requirement of traction equilibrium at
adjacent nodes, the shear strain and the strain normal to the surface at node 4 should be
equal to the corresponding strains at node 6, i.e.

(U4 - U,)/b+(V4 - V,)/a = (U2 - U6 )/b+(V6 - V7 )/a,

(3,4)

where a and b are the sizes of the element shown in Fig. 2; U and V are the displacements
normal and parallel to the surface, respectively. By a simple transformation, U and V can
be related to u and v as follows:

U = u cos 0+ v sin O. V = -u sin O+v cos e, (5.6)

where eis the angle measured counterclockwise from the x-axis to the normal direction of
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the surface. Substituting eqns (I), (2). (5) and (6) into eqns (3) and (4), the boundary
conditions for the equilibrium requirement can be rewritten as:

(7,8)

Therefore, eqns (I), (2), (7) and (8) are the constraint equations for nodes 4 and 6. Similar
constraint equations are obtained for the other nodes on the boundary of the unit cell. Note
that constraint equations can be written for all nodal degrees of freedom on the boundary
except those at the vertices of the unit cell.

3.2. Det"elopment of the interface element
The basic function of the interface element can be described as follows. The normal

and shear stresses along the interface are estimated under the condition of perfect bonding
between the fiber and matrix. These stresses are compared to the allowable stresses (i.e.
interfacial tensile and shear strengths). Debonding occurs when the estimated stresses ex­
ceed the allowable stresses. Note that in this study, the interfacial shear debonding is not
considered. since the interfacial shear strength is usually much larger than the interfacial
tensile strength. Therefore, the debonding will take place when the interfacial tensile stress
exceeds the interfacial tensile strength. The process of debonding is modeled by setting the
stiffness of the interface element to zero and therefore there are no normal nor shear stresses
at the debonded interface.

The interface element developed here consists of four nodes with local node numbers
illustrated in Fig. 3. Points A and B denote the ends of the interface element associated
with local nodes {I. 3} and {2, 4}, respectively. The coordinate axes and the convention for
specifying the normal, n, and the tangent, t, to the interface are indicated in the figure. The
normal and tangent components of the relative displacements. {U}. at the points A and B
can be obtained from the nodal displacements, {u} :

3 A

where

and

{U} = [T]{ u}.

B n

4\:.
y

L.
Fig. 3. Coordinates and node numbering for the interface clement.

(9)
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2 fJ 0 0 -2 -fJ 0 0

[T] = -fJ 2 0 0 fJ -2 0 0
with 2 = COS e, fJ = sin e..

0 0 IX fJ 0 0 -IX -fJ
0 0 -fJ IX 0 0 fJ -2

and () is the angle measured counterclockwise from the x-axis to the normal direction.
The interface element consists of springs between points A and B in both the normal

and tangential directions. Two stiffness properties of the springs for the interface elements
allow the displacements normal to the interface or tangential to the interface to be either
continuous across the interface or allow the two adjacent materials to move independently.
A continuous displacement (essentially infinite stiffness) in both directions stimulates a
perfect bond condition. To model a location on the interface where a bond failure has
occurred, both the normal and tangential stiffnesses are set to zero.

The forces at the nodes. {F}. can be determined as functions of the normal stiffness
(kn) and tangential stiffness (kl ) of the springs and {U} :

{F} = [Ki]{U}.

In the above equation.

{F} = {Fnb FlI • Fn~.'" .F14}T.

and

2kn 0 kn 0 -2kn 0 -kn 0 T

. L 0 2kl 0 kL 0 -2kl 0 -kl[Ki) = ~
6 kn 0 2kn 0 -kn 0 -2kn 0

0 k 0 2k l 0 -k l 0 -2klI

( 10)

where L is the distance between A and B. The nodal forces in the coordinate directions can
be determined by a simple transformation:

fXI = Fnl cos 0 - Fli sin 0, (11, 12)

where; = 1,2,3,4. Eliminating {U} and {F} from eqns (9)-( 12), we obtain the nodal forces
as a function of the nodal displacements in the coordinate direction

where

and

{f} = [ki]{u},

2A 2C A C -2A -2C -A -C
28 C 8 -2C -28 -C -8

2A 2C -A -C -2A -2C

L 28 -C -8 -2C -28
[ki] = - 2A 2C A C6

28 C 8
symm. 2A 2C

28

(13)
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we simplify the above relationship by letting k" equal k.. The stiffness matrix, [kil, of each
interface element needs to be generated at each step of an incremental loading path in
the nonlinear finite element analysis. Moreover, when fiber/matrix debonding occurs, the
stiffness ofspring in the interface element is removed gradually over several load increments.
This is due to the fact that, in a nonlinear analysis, the change has to be made gradually to
obtain a convergent solution.

3.3. Procedure for determining the local and overall properties
For a state of uniform stress, the mechanical performance of a composite can be

obtained through the following three steps:

(I) The composite unit cell is replaced by an equivalent homogeneous cell. For the boundary
conditions at the vertices as shown in Fig. 2, the force, {f}, at the vertices can be
obtained as a function of the applied uniform stresses, {qlo i.e.

where

and

{r} = [RJ{q},

I _[3
2.J3

0
2

I
0

j3
[R] =

2.J3 2

0 .J3 I
2 2.J3

(14)

(2) The resulting equivalent forces and the aforementioned boundary conditions are then
applied to the composite unit cell. The local stress and strain fields and the displacements
at the vertices of the composite cell are obtained from finite element analysis.

(3) The composite unit cell is again replaced by the equivalent homogeneous cell. For the
same vertex boundary conditions as in step (I), the equivalent strain, {t:}, can be
obtained as a function of the displacements at the vertices, {ulo i.e.

(15)

where

The result of {t:} represents the overall transverse strain of the composite under the overall
uniform transverse stress, fa}.

4. NUMERICAL EXAMPLES AND DISCUSSION

The peformance of Kevlar/epoxy composite systems in the transverse direction is
investigated. The Kevlar fiber is assumed to be transversely isotropic and linearly elastic.
The epoxy matrix is assumed to be elastic-perfectly plastic. The mechanical properties of
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Table 1. Fiber and matrix mechanical properties

2499

Kevlar fiber
Axial Young's modulus, Ell.
Transverse Young's modulus, ET
Axial shear modulus, G",
Transverse shear modulus, GT

Axial Poisson's ratio, v"
Transverse Poisson's ratio, VT

Epoxy matrix
Young's modulus, Em
Shear modulus, Gm

Poisson's ratio. Vm

Yield stress, (1,

126.70Pa
7.00Pa
3.00Pa

2.6920Pa
0.3
0.3

3.00Pa
1.I110Pa

0.35
70 MPa

Kevlar and epoxy are obtained from Tsai (1988) and listed in Table I, Experimental results
obtained from Pindera et ai, (1987) show no evidence of matrix failure for the composite
under transverse loadings, Therefore, the possibility of matrix failure is not considered in
the analysis.

A limiting case, which assumes perfect bonding between the fiber and matrix, is studied
first. The initial transverse Young's and shear moduli for Kevlar/epoxy composites with
various fiber volume fractions (vr) are determined and listed in Tables 2 and 3, respectively.
The upper and lower bound solutions predicted by Hashin's (1979) and Teply and Dvorak's
(1988) models are also listed in the Tables for comparison, It can be seen that the bounds
are extremely close from both models and the present results are within the bounds,

As mentioned in the previous section, the interfacial shear debonding is not included
in the analysis, since interfacial shear strength is usually much larger than interfacial tensile
strength. Two interfacial tensile strengths (CT1 -+ 00 and 0'( = 0) are assumed in the next
example. When 0'( -+ 00, perfect bonding is modeled, When 0'( = 0, any interfacial tensile
stress will cause debonding. Consequently, no shear stress can be transmitted at the debond­
ing region. The stress-strain curves for the Kcvlar/epoxy composites with Vr = 0.55 under
transverse tension, shear and compression are predicted. The results for both limiting cases
are shown as solid lines in Figs 4-6 for tension, shear and compression, respectively.

As shown in Figs 4 and 5, the transvcrse tcnsion and shear responses are very sensitive
to the interfacial tcnsile strcngth. On thc contrary, thc compressive responses are very close

Table 2. Transverse Young's modulus (OPa) of Kevlarjepoxy
composites with variow; fiber volume fractions

Vr 0.2 0.4 0.6 0.8

Hashin's modd
upper bound 3.872 4.522 5.232 6.019
lower bound 3.838 4.42l! 5.116 5.953

Teply and Dvorak's modd
upper bound 3.l!56 4.460 5.177 6.033
lower bound 3.800 4.386 5.087 5.943

Present modd 3.83l! 4.434 5.140 5.980

Table 3. Transverse shear modulus (OPa) of Kevlarjepoxy com·
posites with various fiber volume fractions

I'r 0.2 0.4 0.6 0.8

Hashin's model
upper bound 1.313 1.571 1.872 2.223
lower bound 1.297 1.526 1.814 2.187

Teply and Dvorak's model
upper bound 1.305 1.540 1.844 2.230
lower bound 1.280 1.506 1.799 2.182

Present model 1.297 1.529 1.826 2.202
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Fig. 4. Transverse tensile responses for the Kevlar/epoltY composite with Vr = 0.55.
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for both limiting cases. Experimental data obtained from Pindera et al. (1987) are also
plotted as dashed lines in Figs 4-6 for comparison. It can be seen that good agreement is
obtained for the initial moduli by assuming perfect bonding. The experimental results of
transverse tension and shear are bounded by the two limiting cases. Although the exper­
imental compressive response is not bounded by the limiting cases. the difference is small.
This difference may be caused by the fact that epoxy material has a slight material
hardening etfect. which is not included in the analysis.

More calculations are conducted for the same composite system with various interfacial
tensile strengths. The predicted ultimate composite strengths as a function of the interfacial
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Fig. 5. Transverse shear responses for the Kevlar/epoxy composite with Vr = 0.55.

Experimental data 19) - ...

h7"'"-------O. ,. 0

30

20

100 ;------r----.------,-----,
90

80

70

l60
i!. 50

j 40
<IJ

10

0.040.030.01

o"- --'- ..I-.. ---il...- ....J

o 0.02
Strain

Fig. 6. Transverse compressive responses for the Kevlar/epolty composite with Vr = 0.55.
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Fig. 7. Predicted ultimate composite strength as a function of interfacial tensile strength for the
Kevlarfepoxy composite with Vr = 0.55.
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tensile strength (O't) are shown in Fig. 7. The curves can be divided into three regions. The
plateau region at the higher values of 0'\ indicates that no debonding will occur before the
final failure. In the plateau region at the lower values of 0'\, more load can be carried by
the composite after debonding. In the region between these two plateau regions, the final
failure will occur immediately upon debonding. Note that the analysis predicts two types
of stress-strain curves. In the two plateau regions shown in Fig. 7, the composites exhibit
one type of stress-strain curve, which is similar to the stress-strain curves for the cases
0'1 -+ 00 and 0'\ = 0 shown in Figs 4-6. These stress-strain curves have a plateau region and
the overall stress is almost a constant in this region. This constant is treated as the ulti­
mate strength for the composite with this stress-strain plateau. Between those two plateau
regions, the composites exhibit the other type of stress-strain curve. In this case, a sudden
drop in stress due to debonding appears in the stress-strain curve and the maximum stress
is taken as the ultimate strength of the composite.

In the last example. the Kevlar/epoxy composite with Vr =0.55 is studied under overall
combined transverse loadings (O'x and r xy ). The ultimate composite strength is determined
from this analysis for four values of interfacial tensile strength (0 MPa, 25 MPa, 50 MPa,
(0). 81' connecting the ultimate strengths for each O't. failure envelopes are obtained and
plotted in Fig. 8. It is not surprising to see that the interfacial tensile strength has more
pronounced intluence on the tensile and shear strengths than the compressive strength. Also
note that the shapes of failure envelopes are quite different from the ellipses predicted by
the Tsai-Wu (1971) failure criterion.
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25
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0\ (MPa)

Fig. 8. Predicted failure envelope for the Kevlar/epoxy composite with t'r =0.55 under biaxial
loadings.
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It can also be seen from Fig. 8 that the results of the present analysis are dependent
on the assumed interfacial tensile strengths. For comparison, the experimental results
obtained from Pindera et al. (1987) are also shown in the figure. We can see that both
results are in close agreement for I1t = 2S MPa. This agreement serves as an experimental
verification of the interfacial tensile strength.

5. CONCLUSIONS

A finite element model employing special interface elements has been developed to
study the effect of interface bond strength on the transverse behavior of the composites.
The results show that the interfacial tensile strength has a significant influence on the
transverse properties of Kevlarjepoxy composites. The present model can be used as a
design tool to select interface bond strength in a binary composite under specific applied
loads before the composite is manufactured.

Residual thermal stress is usually present at the interface with the composite due to
the cooling processing temperature. For the composite studied here, the values of transverse
thermal expansion coefficients for fiber and matrix are very close. Therefore, the transverse
residual thermal stress is not included in the analysis. But if necessary, the residual thermal
effects can easily be incorporated in this finite element model.

Note that since the periodic distribution of fibers is assumed in the model, the effect
of fiber clustering is not included in the analysis. Consequently, the observation that
transverse cracks are usually nucleated in regions where the fibers are more closely spaced
and also propagate preferentially through such regions cannot be obtained from the analy­
sis. This clustering effect is being studied using random fiber disributions. Also, note that
the interface element developed in this study can be extended to include the effect of fiber­
matrix slipping based on the Coulomb friction law.

Ad(nowled,qements-The authur acknowl...-dges the discussion of the work with E. F. M. Winter and J. R.
Brockenbrough.
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